How Does Life Change and Respond to Challenges?
In this unit students consider the continual change and challenges to which life on Earth has been, and continues to be, subjected to. They study the human immune system and the interactions between its components to provide immunity to a specific pathogen. Students consider how the application of biological knowledge can be used to respond to bioethical issues and challenges related to disease.
Students consider how evolutionary biology is based on the accumulation of evidence over time. They investigate the impact of various change events on a population’s gene pool and the biological consequences of changes in allele frequencies. Students examine the evidence for relatedness between species and change in life forms over time using evidence from paleontology, structural morphology, molecular homology and comparative genomics. Students examine the evidence for structural trends in the human fossil record, recognising that interpretations can be contested, refined or replaced when challenged by new evidence.
Students demonstrate and apply their knowledge of how life changes and responds to challenges through investigation of a selected case study, data analysis and/or bioethical issue. Examples of investigation topics include, but are not limited to: deviant cell behaviour and links to disease; autoimmune diseases; allergic reactions; development of immunotherapy strategies; use and application of bacteriophage therapy; prevention and eradication of disease; vaccinations; bioprospecting for new medical treatments; trends, patterns and evidence for evolutionary relationships; population and species changes over time in non-animal communities such as forests and microbiota; monitoring of gene pools for conservation planning; role of selective breeding programs in conservation of endangered species; or impact of new technologies on the study of evolutionary biology.
■ Area of Study 1: How Do Organisms Respond to Pathogens?
In this area of study students focus on the immune response of organisms to specific pathogens. Students examine unique molecules called antigens and how they illicit an immune response, the nature of immunity and the role of vaccinations in providing immunity. They explain how technological advances assist in managing immune system disorders and how immunotherapies can be applied to the treatment of other diseases.
Students consider that in a globally connected world there are biological challenges that can be mediated by identification of pathogens, the prevention of spread and the development of treatments for diseases.
■ Area of Study 2: How Are Species Related Over Time?
In this area of study students focus on changes to genetic material over time and the evidence for biological evolution. They consider how the field of evolutionary biology is based upon the accumulation of evidence over time and develop an understanding of how interpretations of evidence can change in the light of new evidence as a result of technological advances, particularly in molecular biology. Students consider the biological consequences of changes in allele frequencies and how isolation and divergence are required elements for speciation. They consider the evidence for determining the relatedness between species and examine the evidence for major trends in hominin evolution, including the migration of modern human populations around the world.